Synergistic Effects of Chronic Restraint-Induced Stress and Low-Dose 56Fe-particle Irradiation on Induction of Chromosomal Aberrations in Trp53-Heterozygous Mice

Radiat Res. 2021 Jul 1;196(1):100-112. doi: 10.1667/RADE-20-00218.1.

Abstract

Astronauts can develop psychological stress (PS) during space flights due to the enclosed environment, microgravity, altered light-dark cycles, and risks of equipment failure or fatal mishaps. At the same time, they are exposed to cosmic rays including high atomic number and energy (HZE) particles such as iron-56 (Fe) ions. Psychological stress or radiation exposure can cause detrimental effects in humans. An earlier published pioneering study showed that chronic restraint-induced psychological stress (CRIPS) could attenuate Trp53 functions and increase carcinogenesis induced by low-linear energy transfer (LET) γ rays in Trp53-heterozygous (Trp53+/-) mice. To elucidate possible modification effects from CRIPS on high-LET HZE particle-induced health consequences, Trp53+/- mice were received both CRIPS and accelerated Fe ion irradiation. Six-week-old Trp53+/- C57BL/6N male mice were restrained 6 h per day for 28 consecutive days. On day 8, they received total-body Fe-particle irradiation (Fe-TBI, 0.1 or 2 Gy). Metaphase chromosome spreads prepared from splenocytes at the end of the 28-day restraint regimen were painted with the fluorescence in situ hybridization (FISH) probes for chromosomes 1 (green), 2 (red) and 3 (yellow). Induction of psychological stress in our experimental model was confirmed by increase in urinary corticosterone level on day 7 of restraint regimen. Regardless of Fe-TBI, CRIPS reduced splenocyte number per spleen at the end of the 28-day restraint regimen. At 2 Gy, Fe-TBI alone induced many aberrant chromosomes and no modifying effect was detected from CRIPS on induction of aberrant chromosomes. Notably, neither Fe-TBI at 0.1 Gy nor CRIPS alone induced any increase in the frequency of aberrant chromosomes, while simultaneous exposure resulted in a significant increase in the frequency of chromosomal exchanges. These findings clearly showed that CRIPS could enhance the frequency of chromosomal exchanges induced by Fe-TBI at a low dose of 0.1 Gy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromosome Aberrations*
  • Dose-Response Relationship, Radiation
  • Heterozygote*
  • Iron / administration & dosage*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Restraint, Physical*
  • Spleen / metabolism
  • Spleen / pathology
  • Spleen / radiation effects
  • Stress, Physiological*
  • Tumor Suppressor Protein p53 / genetics*

Substances

  • Trp53 protein, mouse
  • Tumor Suppressor Protein p53
  • Iron