Balance Between Contact and Solvent-Separated Ion Pairs in Mixtures of the Protic Ionic Liquid [Et3NH][MeSO3] with Water Controlled by Water Content and Temperature

J Phys Chem B. 2021 May 6;125(17):4476-4488. doi: 10.1021/acs.jpcb.1c01850. Epub 2021 Apr 24.

Abstract

The formation of aggregates of ionic species is a crucial process in liquids and solutions. Ion speciation is particularly interesting for the case of ionic liquids (ILs) since these Coulombic fluids consist solely of ions. Most of their unique properties, such as enthalpies of vaporization and conductivities, are strongly related to ion pair formation. Here, we show that the balance of hydrogen-bonded contact ion pairs (CIP) and solvent-separated (SIP) ion pairs in protic ionic liquids (PILs) and in their mixtures with water can be well understood by a combination of far-infrared (FIR) and mid-infrared (MIR) spectroscopy, density functional theory (DFT) calculations of PIL/water aggregates, and molecular dynamics (MD) simulations of PIL/water mixtures. This combined approach is applied to mixtures of triethylammonium methanesulfonate [Et3NH][MeSO3] with water. It is shown that ion speciation in this mixture depends on three parameters: the relative hydrogen bond acceptor strength of the counter ion and the molecular solvent, the solvent concentration, and the temperature. For selected PIL/water mixtures, the equilibrium constants for CIPs and SIPs were determined as a function of the solvent content and temperature. Finally, for the studied PIL/water mixtures, the transition from CIPs to SIPs could be understood on enthalpic and entropic grounds. A detailed picture of this interconversion process could be described at the molecular level by means of MD simulations. In addition, the concentration dependence of ion pair formation can be well understood with help of a simplified "cartoon-like" statistical model describing hydrogen bond redistribution.