Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences

Plant Commun. 2020 Jul 22;2(2):100101. doi: 10.1016/j.xplc.2020.100101. eCollection 2021 Mar 8.

Abstract

The most popular CRISPR-SpCas9 system recognizes canonical NGG protospacer adjacent motifs (PAMs). Previously engineered SpCas9 variants, such as Cas9-NG, favor G-rich PAMs in genome editing. In this manuscript, we describe a new plant genome-editing system based on a hybrid iSpyMacCas9 platform that allows for targeted mutagenesis, C to T base editing, and A to G base editing at A-rich PAMs. This study fills a major technology gap in the CRISPR-Cas9 system for editing NAAR PAMs in plants, which greatly expands the targeting scope of CRISPR-Cas9. Finally, our vector systems are fully compatible with Gateway cloning and will work with all existing single-guide RNA expression systems, facilitating easy adoption of the systems by others. We anticipate that more tools, such as prime editing, homology-directed repair, CRISPR interference, and CRISPR activation, will be further developed based on our promising iSpyMacCas9 platform.

Keywords: PAM; adenine base editing; cytosine base editing; iSpyMacCas9; plant genome editing.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • CRISPR-Cas Systems*
  • Gene Editing / methods*
  • Genome, Plant*
  • Oryza / genetics*
  • Triticum / genetics*
  • Zea mays / genetics*