The PSMD14 inhibitor Thiolutin as a novel therapeutic approach for esophageal squamous cell carcinoma through facilitating SNAIL degradation

Theranostics. 2021 Apr 3;11(12):5847-5862. doi: 10.7150/thno.46109. eCollection 2021.

Abstract

Metastasis and chemoresistance are major causes of poor prognosis in patients with esophageal squamous cell carcinoma (ESCC), manipulated by multiple factors including deubiquitinating enzyme (DUB). DUB PSMD14 is reported to be a promising therapeutic target in various cancers. Here, we explored the antitumor activity of Thiolutin (THL), the PSMD14 inhibitor, as a new therapy strategy in ESCC. Methods: Through 4-NQO-induced murine ESCC model, we investigated the expression of PSMD14 in esophageal tumorigenesis. Ubiquitin-AMC assay was performed to evaluate DUB activity of PSMD14 with THL treatment. The effect of THL on epithelial-to-mesenchymal transition (EMT), invasion, stemness and chemosensitivity was detected by using in vitro and in vivo experiments. Immunoprecipitation and in vivo ubiquitination assay were conducted to examine whether THL could impair the deubiquitination and stability of SNAIL regulated by PSMD14. Results: Compared with normal esophageal epithelium, PSMD14 was upregulated in 4-NQO-induced murine esophageal epithelium dysplasia and ESCC tissues. THL could significantly weaken DUB activity of PSMD14. Furthermore, the results of in vitro and in vivo assays showed that THL efficiently suppressed motility and stemness and increased sensitivity to cisplatin in ESCC. Mechanically, THL impaired the interaction between PSMD14 and SNAIL, then promoted the ubiquitination and degradation of SNAIL to inhibit EMT which plays a crucial role in ESCC metastasis, stemness and chemosensitivity. TCGA database analysis revealed that high concomitant PSMD14/SNAIL expression predicted shorter overall survival in esophageal cancer. Conclusion: Our findings demonstrate for the first time that suppression of PSMD14/SNAIL axis by THL could be a novel and promising therapeutic approach for ESCC clinical therapy.

Keywords: Chemosensitivity.; EMT; Esophageal squamous cell carcinoma; PSMD14; SNAIL; Thiolutin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Biomarkers, Tumor / metabolism
  • Carcinogenesis / drug effects
  • Carcinogenesis / metabolism
  • Carcinogenesis / pathology
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Epithelial-Mesenchymal Transition / drug effects
  • Esophageal Neoplasms / drug therapy*
  • Esophageal Neoplasms / metabolism*
  • Esophageal Neoplasms / pathology
  • Esophageal Squamous Cell Carcinoma / drug therapy*
  • Esophageal Squamous Cell Carcinoma / metabolism*
  • Esophageal Squamous Cell Carcinoma / pathology
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplasm Invasiveness / pathology
  • Proteasome Endopeptidase Complex / metabolism*
  • Pyrrolidinones / pharmacology
  • Snail Family Transcription Factors / metabolism*
  • Trans-Activators / metabolism*
  • Ubiquitination / drug effects
  • Up-Regulation / drug effects

Substances

  • Antineoplastic Agents
  • Biomarkers, Tumor
  • PSMD14 protein, human
  • Pyrrolidinones
  • SNAI1 protein, human
  • Snail Family Transcription Factors
  • Trans-Activators
  • acetopyrrothine
  • Proteasome Endopeptidase Complex