First passage time study of DNA strand displacement

Biophys J. 2021 Jun 15;120(12):2400-2412. doi: 10.1016/j.bpj.2021.01.043. Epub 2021 Apr 22.

Abstract

DNA strand displacement, in which a single-stranded nucleic acid invades a DNA duplex, is pervasive in genomic processes and DNA engineering applications. The kinetics of strand displacement have been studied in bulk; however, the kinetics of the underlying strand exchange were obfuscated by a slow bimolecular association step. Here, we use a novel single-molecule fluorescence resonance energy transfer approach termed the "fission" assay to obtain the full distribution of first passage times of unimolecular strand displacement. At a frame time of 4.4 ms, the first passage time distribution for a 14-nucleotide displacement domain exhibited a nearly monotonic decay with little delay. Among the eight different sequences we tested, the mean displacement time was on average 35 ms and varied by up to a factor of 13. The measured displacement kinetics also varied between complementary invaders and between RNA and DNA invaders of the same base sequence, except for T → U substitution. However, displacement times were largely insensitive to the monovalent salt concentration in the range of 0.25-1 M. Using a one-dimensional random walk model, we infer that the single-step displacement time is in the range of ∼30-300 μs, depending on the base identity. The framework presented here is broadly applicable to the kinetic analysis of multistep processes investigated at the single-molecule level.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Sequence
  • DNA* / genetics
  • Fluorescence Resonance Energy Transfer*
  • Kinetics
  • Time and Motion Studies

Substances

  • DNA