Challenges in the application of NGS in the clinical laboratory

Hum Immunol. 2021 Nov;82(11):812-819. doi: 10.1016/j.humimm.2021.03.011. Epub 2021 Apr 21.

Abstract

Next-generation sequencing (NGS), also known as massively parallel sequencing, has revolutionized genomic research. The current advances in NGS technology make it possible to provide high resolution, high throughput HLA typing in clinical laboratories. The focus of this review is on the recent development and implementation of NGS in clinical laboratories. Here, we examine the critical role of NGS technologies in clinical immunology for HLA genotyping. Two major NGS platforms (Illumina and Ion Torrent) are characterized including NGS library preparation, data analysis, and validation. Challenges of NGS implementation in the clinical laboratory are also discussed, including sequencing error rate, bioinformatics, result interpretation, analytic sensitivity, as well as large data storage. This review aims to promote the broader applications of NGS technology in clinical laboratories and advocate for the novel applications of NGS to drive future research.

Keywords: Clinical; Genomics; Immunology; Next-generation sequencing; Precision medicine.

Publication types

  • Review

MeSH terms

  • Gene Library
  • HLA Antigens / genetics
  • High-Throughput Nucleotide Sequencing*
  • Histocompatibility Testing / methods
  • Humans
  • Laboratories, Clinical*
  • Precision Medicine / methods
  • Sequence Analysis, DNA / methods

Substances

  • HLA Antigens