Quantum dynamics of Mn2+ in dimethylammonium magnesium formate

J Chem Phys. 2021 Apr 21;154(15):154201. doi: 10.1063/5.0046984.

Abstract

Dimethylammonium magnesium formate, [(CH3)2NH2][Mg(HCOO)3] or DMAMgF, is a model used to study high temperature hybrid perovskite-like dielectrics. This compound displays an order-disorder phase transition at about 260 K. Using multifrequency electron spin resonance in continuous wave and pulsed modes, we herein present the quantum dynamics of the Mn2+ ion probe in DMAMgF. In the high temperature paraelectric phase, we observe a large distribution of the zero field splitting that is attributed to the high local disorder and further supported by density functional theory computations. In the low temperature ferroelastic phase, a single structure phase is detected and shown to contain two magnetic structures. The complex electron paramagnetic resonance signals were identified by means of the Rabi oscillation method combined with the crystal field kernel density estimation.