Fast bilayer-micelle fusion mediated by hydrophobic dipeptides

Biophys J. 2021 Jun 1;120(11):2330-2342. doi: 10.1016/j.bpj.2021.04.012. Epub 2021 Apr 19.

Abstract

To understand the transition from inanimate matter to life, we studied a process that directly couples simple metabolism to evolution via natural selection, demonstrated experimentally by Adamala and Szostak. In this process, dipeptides synthesized inside precursors of cells promote absorption of fatty acid micelles to vesicles, inducing their preferential growth and division at the expense of other vesicles. The process is explained on the basis of coarse-grained molecular dynamics simulations, each extending for tens of microseconds, carried out to model fusion between a micelle and a membrane, both made of fatty acids in the absence and presence of hydrophobic dipeptides. In all systems with dipeptides, but not in their absence, fusion events were observed. They involve the formation of a stalk made by hydrophobic chains from the micelle and the membrane, similar to that postulated for vesicle-vesicle fusion. The emergence of a stalk is facilitated by transient clusters of dipeptides, side chains of which form hydrophobic patches at the membrane surface. Committor probability calculations indicate that the size of a patch is a suitable reaction coordinate and allows for identifying the transition state for fusion. Free-energy barrier to fusion is greatly reduced in the presence of dipeptides to only 4-5 kcal/mol, depending on the hydrophobicity of side chains. The mechanism of mediated fusion, which is expected to apply to other small peptides and hydrophobic molecules, provides a robust means by which a nascent metabolism can confer evolutionary advantage to precursors of cells.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Dipeptides*
  • Hydrophobic and Hydrophilic Interactions
  • Lipid Bilayers
  • Membrane Fusion
  • Micelles*
  • Molecular Dynamics Simulation

Substances

  • Dipeptides
  • Lipid Bilayers
  • Micelles