Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio

PLoS One. 2021 Apr 22;16(4):e0248537. doi: 10.1371/journal.pone.0248537. eCollection 2021.

Abstract

In the aquaculture sector, a strategy for the more efficient use of resources and proper disease control is needed to overcome the challenges of meat production worldwide. Modulation of the gastrointestinal tract microbiota is a promising approach for promoting animal health and preventing infection. This feeding experiment was conducted to discover the phytonutrient-induced changes in the gastrointestinal tract microbiota of common carp (Cyprinus carpio). Acclimatized animals aged 7 months (30 weeks) were divided randomly into five experimental groups to investigate the effects of the applied feed additives. The dietary supplements were manufactured from anthocyanin-containing processing wastes from the food industry, specifically the production of Hungarian sour cherry extract, synbiotics from fermented corn, and fermentable oligosaccharides from Hungarian sweet red pepper seeds and carotenoids from Hungarian sweet red pepper pulps, applied at a dose of 1%. The gut contents of the animals were collected at four time points throughout the 6-week study period. To track the compositional and diversity changes in the microbiota of the carp intestinal tract, V3-V4 16S rRNA gene-based metagenomic sequencing was performed. The growth performance of common carp juveniles was not significantly affected by supplementation of the basal diet with plant extracts. Phytonutrients improve the community diversity, increase the Clostridium and Lactobacillus abundances and decrease the abundances of potentially pathogenic and spoilage bacteria, such as Shewanella, Pseudomonas, Acinetobacter and Aeromonas. The phyla Proteobacteria, Tenericutes and Chlamydiae were positively correlated with the body weight, whereas Spirochaetes and Firmicutes exhibited negatively correlations with the body weight. We hypothesize that the application of phytonutrients in aquaculture settings might be a reasonable green approach for easing the usage of antibiotics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed* / analysis
  • Animals
  • Aquaculture
  • Carps / microbiology*
  • Dietary Supplements* / analysis
  • Gastrointestinal Microbiome
  • Intestines / microbiology
  • Phytochemicals* / analysis

Substances

  • Phytochemicals

Grants and funding

This work was supported in the form of funding by the European Regional and Development Fund and the Government of Hungary within the project GINOP-2.3.2-15-2016-00025 awarded to LS and MF. The article processing charge was supported by the EFOP-3.6.3-VEKOP-16-2017-00008 project awarded to all authors. The project is co-financed by the European Union and the European Social Fund.