Understanding of the C-H stretch region of infra-red spectroscopy: an analysis of the final state wavefunctions

Phys Chem Chem Phys. 2021 Apr 21;23(15):9176-9188. doi: 10.1039/d0cp01157f. Epub 2021 Apr 12.

Abstract

The nature of the wavefunctions associated with the final states in the CH stretching region of several medium sized molecules is analysed. The number of optically bright transitions is much larger than the number of CH oscillators present in the molecule, and they are spread over a range of about 300 cm-1. Several of them are clustered together within about 5 cm-1 with near equal intensities. The final states of all these transitions are superpositions of multiple zeroth order states. In almost all of such superpositions, no single zeroth order state has more than 50% weight. Several multiquantum states, with three to four quanta of excitation dominate the final states, with the CH chromophore contributing only a small weightage. Thus the band structure of the CH stretch region is due to several optically bright transitions whose final states are superpositions of low frequency multiquantum states with the CH chromophore contributing only a small weight to make them spectroscopically active.