Laboratory evaluation of higher-order aberrations and light scattering in explanted opacified intraocular lenses

Eye Vis (Lond). 2021 Apr 22;8(1):14. doi: 10.1186/s40662-021-00235-5.

Abstract

Background: Intraocular lens (IOL) calcification is a serious condition that can only be treated by removing the clouded lens. Since explantation bears the risk of complications, it is often deferred until the patient finds the symptoms intolerable. Usually, as the IOL opacifies, visual acuity is minimally affected early on. In this study, we assessed the impact of IOL opacification on optical quality.

Methods: We analyzed ten opacified explanted IOLs (Oculentis GmbH). Wavefront aberrations were obtained with a SHSOphthalmic device (Optocraft GmbH), which features a Hartmann-Shack sensor. The root mean square (RMS) of higher-order aberrations (HOAs) was compared. The effect of calcification on image quality was assessed through the Strehl ratio (SR). We detected light scattering with a C-Quant (Oculus GmbH) and expressed it as a straylight parameter.

Results: At 2 mm, 3 mm and 4 mm, the mean RMS (±standard deviation) was 0.033 μm (±0.026 μm), 0.044 μm (±0.027), and 0.087 μm (±0.049), respectively. The mean SR value was 0.81 ± 0.15 at 3 mm, with four IOLs showing a nearly diffraction-limited performance, but in two explants, opacification precluded reliable measurements. Increased straylight was found in all opacified IOLs with a mean value of 150.2 ± 56.3 deg2/sr at 3 mm.

Conclusions: We demonstrated that IOL opacification induces HOAs. However, the RMS remained low, which resulted only in a slight reduction of the SR-derived optical quality. On the other hand, we found a severe straylight elevation in the opacified lenses, which may result in dysphotopsia, such as glare, and subjective complaints, despite good visual acuity.

Keywords: Higher-order aberrations; IOL opacification; Intraocular lens; Straylight.

Grants and funding