Highly Active and Stable Palladium Catalysts on Novel Ceria-Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons

Environ Sci Technol. 2021 Jun 1;55(11):7624-7633. doi: 10.1021/acs.est.1c00077. Epub 2021 Apr 19.

Abstract

Precious metal catalysts with superior low-temperature activity and excellent thermal stability are highly needed in environmental catalysis field. In this work, a novel two-step incipient wetness impregnation (T-IWI) method was developed for the fabrication of a unique and highly stable CeO2/Al2O3 support (CA-T). Pd anchored on CA-T exhibited a much higher low-temperature catalytic activity and superior thermal stability in carbon monoxide (CO) and hydrocarbon (HC) oxidations, compared to Pd anchored on conventional CeO2/Al2O3 (CA), which was prepared by a one-step IWI method. After aging treatment at 800 °C, the CO oxidation rate on Pd/CA-T (1.69 mmol/(gPd s)) at 120 °C was 4.1 and 84.5 times of those on Pd/CA (0.41 mmol/(gPd s)) and Pd/Al2O3 (0.02 mmol/(gPd s)), respectively. It was revealed that the CA-T support with well-controlled small CeO2 particles (ca. 12 nm) possessed abundant defects for Pd anchoring, which created rich Pd-CeO2 interfaces with strengthened interaction between Pd and CeO2 where oxygen could be efficiently activated. This resulted in the significantly improved oxidation activity and thermal stability of Pd/CA-T catalysts. The T-IWI method developed herein can be applied as a universal approach to prepare highly stable metal oxide-alumina-based supports, which have broad application in environmental catalyst design, especially for automobile exhaust aftertreatment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aluminum Oxide*
  • Carbon Monoxide
  • Catalysis
  • Hydrocarbons
  • Palladium*

Substances

  • Hydrocarbons
  • Palladium
  • Carbon Monoxide
  • Aluminum Oxide