Same-Energy UV Photons and Low-Energy Electrons Activating Methane and Ammonia Frozen in Amorphous Solid Water

J Phys Chem A. 2021 Apr 29;125(16):3432-3443. doi: 10.1021/acs.jpca.1c00215. Epub 2021 Apr 19.

Abstract

UV photons and low-energy electrons play an important role in the evolution of various molecules in the interstellar medium (ISM). Here, we examined the product molecule formation as a result of irradiation of 193 nm photons and 6.4 eV electrons (same energy under identical laboratory conditions) on D2O|CH4 + ND3|D2O sandwiched films deposited on Ru(0001) substrate at 25 K in ultrahigh vacuum as a model for processes in the ISM. Temperature-programmed desorption spectra performed following the irradiation revealed the signature of hydrazine and formamide product molecules. These molecules were, however, formed exclusively following the photons' irradiation. These results were compared with the products obtained from a D2O|CH4|D2O sample without ammonia, where deuterated formaldehyde was the dominant product, formed also by photons only. Our results indicate that the photon-induced activation of the cofrozen molecules within D2O occurs via direct (partial) dissociation of the host and embedded molecules, followed by sample annealing. The electron-induced activation occurs through a direct dissociative electron attachment mechanism. The results presented here suggest possible pathways to generate various C-N, C-O, C-C, N-O, and N-H bonds containing molecules in the ISM.