Enhanced Non-Toxic Immunodetection of Alternaria Mycotoxin Tenuazonic Acid Based on Ferritin-Displayed Anti-Idiotypic Nanobody-Nanoluciferase Multimers

J Agric Food Chem. 2021 Apr 28;69(16):4911-4917. doi: 10.1021/acs.jafc.1c01128. Epub 2021 Apr 18.

Abstract

The non-toxic immunoassay for mycotoxins is being paid more attention due to its advantages of higher safety and cost savings by using anti-idiotype antibodies to substitute toxins. In this study, with tenuazonic acid (TeA), a kind of highly toxic Alternaria mycotoxin as the target, an enhanced non-toxic immunoassay was developed based on the ferritin-displayed anti-idiotypic nanobody-nanoluciferase multimers. First, three specific β-type anti-idiotype nanobodies (AId-Nbs) bearing the internal image of TeA mycotoxin were selected from an immune phage display library. Then, the AId-Nb 2D with the best performance was exploited to generate a nanoluciferase (Nluc)-functionalized fusion monomer, by which a one-step non-toxic immunodetection format for TeA was established and proven to be effective. To further improve the affinity of the monomer, a ferritin display strategy was used to prepare 2D-Nluc fusion multimers. Finally, an enhanced bioluminescent enzyme immunoassay (BLEIA) was established in which the half maximal inhibitory concentration (IC50) for TeA was 6.5 ng/mL with a 10.5-fold improvement of the 2D-based enzyme-linked immunosorbent assay (ELISA). The proposed assay exhibited high selectivities and good recoveries of 80.0-95.2%. The generated AId-Nb and ferritin-displayed AId-Nb-Nluc multimers were successfully extended to the application of TeA in food samples. This study brings a new strategy for production of multivalent AId-Nbs and non-toxic immunoassays for trace toxic contaminants.

Keywords: anti-idiotypic nanobody; ferritin; fusion multimers; nanobody-nanoluciferase; tenuazonic acid.

MeSH terms

  • Alternaria
  • Enzyme-Linked Immunosorbent Assay
  • Ferritins
  • Mycotoxins*
  • Single-Domain Antibodies* / genetics
  • Tenuazonic Acid

Substances

  • Mycotoxins
  • Single-Domain Antibodies
  • Tenuazonic Acid
  • Ferritins