Antioxidant and UV-Blocking Properties of a Carboxymethyl Cellulose-Lignin Composite Film Produced from Oil Palm Empty Fruit Bunch

ACS Omega. 2021 Mar 29;6(14):9653-9666. doi: 10.1021/acsomega.1c00249. eCollection 2021 Apr 13.

Abstract

Oil palm empty fruit bunch (EFB) pulp with the highest cellulose content of 83.42% was obtained from an optimized process of acid pretreatment (0.5% v/v H2SO4), alkaline extraction (15% w/w NaOH), and hydrogen peroxide bleaching (10% w/v H2O2), respectively. The EFB cellulose was carboxymethylated, and the obtained carboxymethyl cellulose (CMC) was readily water-soluble (81.32%). The EFB CMC was blended with glycerol and cast into a composite film. Lignin that precipitated from the EFB black liquor was also incorporated into the film at different concentrations, and its effect on the UV-blocking properties of the film was determined. Interestingly, the EFB CMC film without lignin addition completely blocked UV-B transmittance. The incorporation of lignin at all concentrations significantly enhanced the UV-A blocking and other physical properties of the film, including the surface roughness, thickness, and thermal stability, although the tensile strength and water vapor permeability were not significantly affected. Complete UV-A and UV-B blocking were observed when lignin was added at 0.2% (w/v), and the film also exhibited the highest antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals with an half-maximal inhibitory concentration (IC50) value of 3.87 mg mL-1.