Dissecting the role of glutamine in seeding peptide aggregation

Comput Struct Biotechnol J. 2021 Mar 13:19:1595-1602. doi: 10.1016/j.csbj.2021.02.014. eCollection 2021.

Abstract

Poly glutamine and glutamine-rich peptides play a central role in a plethora of pathological aggregation events. However, biophysical characterization of soluble oligomers -the most toxic species involved in these processes- remains elusive due to their structural heterogeneity and dynamical nature. Here, we exploit the high spatio-temporal resolution of coarse-grained simulations as a computational microscope to characterize the aggregation propensity and morphology of a series of polyglutamine and glutamine-rich peptides. Comparative analysis of ab-initio aggregation pinpointed a double role for glutamines. In the first phase, glutamines mediate seeding by pairing monomeric peptides, which serve as primers for higher-order nucleation. According to the glutamine content, these low molecular-weight oligomers may then proceed to create larger aggregates. Once within the aggregates, buried glutamines continue to play a role in their maturation by optimizing solvent-protected hydrogen bonds networks.

Keywords: Coarse grained modelling; Molecular dynamics; Peptide aggregation; Polyglutamine diseases; Toxic oligomers.