Expression of CD146 and Regenerative Cytokines by Human Placenta-Derived Mesenchymal Stromal Cells upon Expansion in Different GMP-Compliant Media

Stem Cells Int. 2021 Apr 2:2021:6662201. doi: 10.1155/2021/6662201. eCollection 2021.

Abstract

Mesenchymal stromal cells (MSCs) have been successfully employed in clinical applications. In most studies, autologous MSCs from the bone marrow (bmMSCs) were used, and others employed autologous adipose tissue-derived stromal cells (ADSCs). Recently, clinical feasibility studies provided evidence that MSCs from human term placenta (pMSCs) can be used for homologous therapy facilitating access to regenerative cells in emergency situations, when autologous cells are not available or not suitable. We therefore investigated the expression of MSC stemness marker CD146 and the expression of neuro- and myoregenerative cytokines by human pMSCs after expansion in three different media compliant with good manufacturing protocols (GMP) in comparison to pMSCs expanded in a commercial MSC expansion media. To replace xenobiotic serum in the GMP-compliant media employed in this study, either human serum, human serum plus platelet lysate (PLL), or human plasma plus PLL was used. We report that enrichment of media with PLL accelerates pMSC proliferation but reduces the expression of the stemness marker CD146 significantly, while PLL deprivation enhanced the CD146 expression. In contrast, the reduced expression of CD146 by PLL deprivation was not observed on bmMSCs. The expression of the cytokines investigated was not modulated significantly by PLL. We conclude that accelerated expansion of pMSCs in GMP-compliant media enriched by PLL reduces the expression of stemness marker CD146, but does not influence the expression of neuro- and myoregenerative cytokines.