Synergy between indigenous bacteria and extracellular electron shuttles enhances transformation and mobilization of Fe(III)/As(V)

Sci Total Environ. 2021 Aug 20:783:147002. doi: 10.1016/j.scitotenv.2021.147002. Epub 2021 Apr 9.

Abstract

The reduction of Fe(III) by metal-reducing bacteria through extracellular electron transfer (EET) is a critical link in the biogeochemical cycle of As/Fe, and humic substances are believed to play a role in this process. In this study, the indigenous As-resistant bacterium Bacillus D2201 isolated from the Datong Basin was responsible for the valence transition of Fe and As in the groundwater environment. The bacterium has both the arsC gene for intracellular arsenate reduction and an EET pathway for transferring electrons to an electrode or Fe(III). Chronoamperometry showed that 3.0- and 10.2-fold increases in the output current density were achieved by injecting 0.05 and 0.5 mM AQDS with an inoculation of Bacillus D2201. Interestingly, Fe(III) bio-reduction is not only regulated by AQDS, but also by As(V) stimulation. The increase in pyruvate consumption and levels of intracellular glutathione (GSH) suggest that As pressure promotes cell metabolism and the consumption of electron donors for Fe(III) reduction with strain D2201. The reduction and dissolution of Fe(III) mineral regulated by AQDS dominated the release and mobilization of As. Compared with the AQDS-free treatment, 5.5-, 6.6-, and 7.2-fold increases in the amounts of Fe(II) were released with the addition of 0.1, 0.5, and 1 mM AQDS, respectively, and approximately 2.6-, 2.8-, and 3.2-fold increases in the As(V) levels were observed under the same conditions. These insights have profound environmental implications with respect to the effect of AQDS and As stress on EET and Fe(III) reduction in arsenic-resistant bacteria.

Keywords: Arsenate release; Extracellular electron transfer; Ferric iron; Groundwater system; Microbial reduction.

MeSH terms

  • Arsenic*
  • Bacteria
  • Electrons
  • Ferric Compounds*
  • Oxidation-Reduction

Substances

  • Ferric Compounds
  • Arsenic