Rapid analysis of 237Np and Pu isotopes in small volume urine by SF-ICP-MS and ICP-MS/MS

Anal Chim Acta. 2021 May 8:1158:338431. doi: 10.1016/j.aca.2021.338431. Epub 2021 Mar 20.

Abstract

Internal contamination with alpha-particle emitting actinides, such as 237Np, 239Pu, 240Pu, is likely to bring a large amount of dose to the tissues of persons even if the intake amount is small. To provide timely information for prompt decision-making in radiation emergency therapy, we developed a simple and rapid method for urinary bioassay to determine ultra-trace 237Np and Pu isotopes using SF-ICP-MS and ICP-MS/MS. To avoid polyatomic interferences and tailing effects from U, 237Np and Pu isotopes were collected after removing U effectively using a simple single chromatographic column packed with 2 mL AG MP-1M anion exchange resin, exhibiting a high decontamination factor of 108 for 238U. The overall chemical fractionation between 237Np and 242Pu for the whole analytical procedure was 0.974 ± 0.064 (k = 2), allowing us to measure 237Np and Pu isotopes using 242Pu as a yield tracer with yields of 76 ± 5%. Using ICP-MS/MS with low background provided the method detection limits for 237Np, 239Pu, 240Pu, and 241Pu of 0.025, 0.025, 0.015, and 0.020 fg mL-1, respectively, for 20 mL of urine sample. Those were comparable to detection limits of SF-ICP-MS with high sensitivity. Subsequently, three urine reference materials with Pu spike, provided by the Association for the PROmotion of Quality COntrol in RADiotoxicological Analysis (PROCORAD), France, were analyzed by the developed method and the conventional alpha spectrometry technique for validation. Finally, the developed method was successfully employed to measure the contamination level of 237Np, 239Pu, 240Pu, and 241Pu in urine samples collected during decorporation therapy using DTPA, after a Pu inhalation exposure accident in Japan. The high throughput (9 h for 12 samples), simplicity, low cost, and high sensitivity of the method will allow greater numbers of related laboratories to be involved in screening activities for unexpected actinide exposure, such as in the case of a large scale radiological disaster.

Keywords: AG MP-1M resin; Actinide inhalation; DTPA; ICP-MS/MS; SF-ICP-MS; Urine.

MeSH terms

  • Japan
  • Plutonium* / analysis
  • Spectrum Analysis
  • Tandem Mass Spectrometry
  • Water Pollutants, Radioactive* / analysis

Substances

  • Water Pollutants, Radioactive
  • Plutonium