Multistage onset of epidemics in heterogeneous networks

Phys Rev E. 2021 Mar;103(3-1):032313. doi: 10.1103/PhysRevE.103.032313.

Abstract

We develop a theory for the susceptible-infected-susceptible (SIS) epidemic model on networks that incorporate both network structure and dynamic correlations. This theory can account for the multistage onset of the epidemic phase in scale-free networks. This phenomenon is characterized by multiple peaks in the susceptibility as a function of the infection rate. It can be explained by that, even under the global epidemic threshold, a hub can sustain the epidemics for an extended period. Moreover, our approach improves theoretical calculations of prevalence close to the threshold in heterogeneous networks and also can predict the average risk of infection for neighbors of nodes with different degree and state on uncorrelated static networks.