Comparing cortico-motor hotspot identification methods in the lower extremities post-stroke: MEP amplitude vs. latency

Neurosci Lett. 2021 May 29:754:135884. doi: 10.1016/j.neulet.2021.135884. Epub 2021 Apr 19.

Abstract

Transcranial magnetic stimulation (TMS) is a technique used to probe and measure cortico-motor responses of the nervous system. However, lower extremity (LE) specific methodology has been slow to develop. In this retrospective analysis, we investigated what motor evoked potential metric, amplitude (MEPamp) or latency (MEPlat), best distinguished the motor-cortical target, i.e. hotspot, of the tibialis anterior and soleus post-stroke. Twenty-three participants with stroke were included in this investigation. Neuronavigation was used to map hotspots, derived via MEPamp and MEPlat, over a 3cm × 5cm grid. Distances between points with the greatest response within a session and between days were compared. Both criterion, amplitude and latency, provided poor identification of locations between trials within a session, and between multiple visits. Identified hotspots were similar only 15 % and 8% of the time between two assessments within the same session, for amplitude and latency respectively. However, MEPamp was more consistent in identifying hotspots, evidenced by locations being less spatially distant from each other (Amplitude: 1.4 cm (SD 0.10) Latency: 1.7 (SD 1.04), P = 0.008) within a session and between days (Amplitude: 1.3 cm (SD 0.95), Latency 1.9 cm (SD 1.14), P = 0.004). While more work is needed to develop LE specific methodology for TMS, especially as it applies to investigating gait impairments, MEPamp appears to be a more consistent criterion for hotspot identification when compared to MEPlat. It is recommended that future works continue to use MEPamp when identifying tibialis anterior and soleus hotspots using neuronavigation.

Keywords: Corticomotor response; Double cone coil; Neuronavigation; Soleus; Stroke; Tibialis anterior.

Publication types

  • Comparative Study
  • Observational Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Aged
  • Brain Mapping / methods*
  • Cross-Sectional Studies
  • Evoked Potentials, Motor / physiology
  • Female
  • Humans
  • Lower Extremity / innervation
  • Lower Extremity / physiopathology*
  • Male
  • Middle Aged
  • Motor Cortex / physiopathology*
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiopathology*
  • Retrospective Studies
  • Stroke / diagnosis*
  • Stroke / physiopathology
  • Transcranial Magnetic Stimulation / methods