Cerebrospinal fluid flow driven by arterial pulsations in axisymmetric perivascular spaces: Analogy with Taylor's swimming sheet

J Theor Biol. 2021 Aug 21:523:110709. doi: 10.1016/j.jtbi.2021.110709. Epub 2021 Apr 20.

Abstract

Cerebrospinal fluid (CSF) flow in the perivascular space (PVS), which surrounds the arteries in the brain, is of paramount importance in the removal of metabolic waste. Despite a number of experimental and numerical studies regarding CSF flow, the underlying mechanics of CSF flow are still debated, especially regarding whether an arterial pulsation can indeed produce net CSF flow velocity. Furthermore, the relationship between CSF flow and arterial wall pulsation has not been fully defined. To clarify these questions, we numerically investigated the CSF flow in the PVS in an axisymmetric channel with a pulsating boundary, where CSF is modeled as an incompressible, Newtonian viscous fluid in non-porous space. Our numerical results show that the net CSF flow velocity driven by the arterial pulsation is consistent with that of previous animal experiments. However, the peak oscillatory velocity is two orders of magnitude larger than the net velocity. Interestingly, the net CSF flow velocity collapses on the analytical solution derived from the lubrication theory in analogy with Taylor's swimming sheet model.

Keywords: Cerebrospinal fluid flow; Lubrication theory; Numerical Simulations; Perivascular pumping.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arteries*
  • Brain
  • Pulsatile Flow
  • Swimming*