Efficient Embedded Cluster Density Approximation Calculations with an Orbital-Free Treatment of Environments

J Chem Theory Comput. 2021 May 11;17(5):2737-2751. doi: 10.1021/acs.jctc.0c01133. Epub 2021 Apr 15.

Abstract

The computational cost of the Kohn-Sham density functional theory (KS-DFT), employing advanced orbital-based exchange-correlation (XC) functionals, increases quickly for large systems. To tackle this problem, we recently developed a local correlation method in the framework of KS-DFT: the embedded cluster density approximation (ECDA). The aim of ECDA is to obtain accurate electronic structures in an entire system. With ECDA, for each atom in a system, we define a cluster to enclose that atom, with the rest atoms treated as the environment. The system's electron density is then partitioned among the cluster and the environment. The cluster's XC energy density is then calculated based on its electron density using an advanced orbital-based XC functional. The system's XC energy is obtained by patching all clusters' XC energy densities in an atom-by-atom manner. In our previous formulation of ECDA, environments were treated by KS-DFT, which makes the following two tasks computationally expensive for large systems. The first task is to partition the system's electron density among a cluster and its environment. The second task is to solve the environments' Sternheimer equations for calculating the system's XC potential. In this work, we remove these two computational bottlenecks by treating the environments with the orbital-free (OF) DFT. The new method is called ECDA-envOF. The performance of ECDA-envOF is examined in two systems: ester and Cl-tetracene, for which the exact exchange (EXX) is used as the advanced XC functional. We show that ECDA-envOF gives results that are very close to the previous formulation in which the environments were treated by KS-DFT. Therefore, ECDA-envOF can be used for future large-scale simulations. Another focus of this work is to examine ECDA-envOF's performance on systems having different bond types. With ECDA-envOF, we calculate the energy curves for stretching/compressing some covalent, metallic, and ionic systems. ECDA-envOF's predictions agree well with the benchmarks by using reasonably large clusters. These examples demonstrate that ECDA-envOF is nearly a black-box local correlation method for investigating heterogeneous materials in which different bond types exist.