Direct Growth of Highly Conductive Large-Area Stretchable Graphene

Adv Sci (Weinh). 2021 Feb 1;8(7):2003697. doi: 10.1002/advs.202003697. eCollection 2021 Apr.

Abstract

The direct synthesis of inherently defect-free, large-area graphene on flexible substrates is a key technology for soft electronic devices. In the present work, in situ plasma-assisted thermal chemical vapor deposition is implemented in order to synthesize 4 in. diameter high-quality graphene directly on 10 nm thick Ti-buffered substrates at 100 °C. The in situ synthesized monolayer graphene displays outstanding stretching properties coupled with low sheet resistance. Further improved mechanical and electronic performances are achieved by the in situ multi-stacking of graphene. The four-layered graphene multi-stack is shown to display an ultralow resistance of ≈6 Ω sq-1, which is consistently maintained during the harsh repeat stretching tests and is assisted by self-p-doping under ambient conditions. Graphene-field effect transistors fabricated on polydimethylsiloxane substrates reveal an unprecedented hole mobility of ≈21 000 cm2 V-1 s-1 at a gate voltage of -4 V, irrespective of the channel length, which is consistently maintained during the repeat stretching test of 5000 cycles at 140% parallel strain.

Keywords: giant domain size; high conductivity; low‐temperature growth; superb stretchability; transfer‐free monolayer graphene.