Developmental Changes in ANS Precision Across Grades 1-9: Different Patterns of Accuracy and Reaction Time

Front Psychol. 2021 Mar 24:12:589305. doi: 10.3389/fpsyg.2021.589305. eCollection 2021.

Abstract

The main aim of this study was to analyze the patterns of changes in Approximate Number Sense (ANS) precision from grade 1 (mean age: 7.84 years) to grade 9 (mean age: 15.82 years) in a sample of Russian schoolchildren. To fulfill this aim, the data from a longitudinal study of two cohorts of children were used. The first cohort was assessed at grades 1-5 (elementary school education plus the first year of secondary education), and the second cohort was assessed at grades 5-9 (secondary school education). ANS precision was assessed by accuracy and reaction time (RT) in a non-symbolic comparison test ("blue-yellow dots" test). The patterns of change were estimated via mixed-effect growth models. The results revealed that in the first cohort, the average accuracy increased from grade 1 to grade 5 following a non-linear pattern and that the rate of growth slowed after grade 3 (7-9 years old). The non-linear pattern of changes in the second cohort indicated that accuracy started to increase from grade 7 to grade 9 (13-15 years old), while there were no changes from grade 5 to grade 7. However, the RT in the non-symbolic comparison test decreased evenly from grade 1 to grade 7 (7-13 years old), and the rate of processing non-symbolic information tended to stabilize from grade 7 to grade 9. Moreover, the changes in the rate of processing non-symbolic information were not explained by the changes in general processing speed. The results also demonstrated that accuracy and RT were positively correlated across all grades. These results indicate that accuracy and the rate of non-symbolic processing reflect two different processes, namely, the maturation and development of a non-symbolic representation system.

Keywords: approximate number sense; general processing speed; non-symbolic comparison; numerical ratio effect; speed-accuracy trade-off.