Evidence of a rapid phosphorus-induced regime shift in a large deep reservoir

Sci Total Environ. 2021 Aug 15:782:146755. doi: 10.1016/j.scitotenv.2021.146755. Epub 2021 Mar 30.

Abstract

Ecological regime shift studies in freshwater systems are mainly limited to shallow lakes and reservoirs, while abrupt changes in deeper lakes are often attributed to climate change. Here, we demonstrate the application of regime shift theory to one of California's newest and deepest reservoirs, Diamond Valley Lake (DVL), which in recent years showed an unexpected rapid departure from its water quality conditions of the previous decade. The reservoir shifted from a well oxygenated condition with low phytoplankton growth to a hypoxic, phytoplankton-dominated turbid system. We statistically identified the critical stressor (phosphorus (P)), switch points, and its load threshold and characterized its transition to an alternative stable state and the stabilizing mechanisms contributing to hysteresis. We analyzed long-term environmental, chemical and flow data, conducted a hydrographic survey, and developed a hydrodynamic model to characterize the factors that contributed to regime shift and to evaluate different management strategies that might reverse this shift. Our findings indicate that large deep systems exhibit different transition dynamics in the presence of an acute stressor compared to regime shifts in shallow systems. A cumulative external TP load threshold of 4.6 mg m-2 d-1 added to the reservoir over nearly 11 months was identified as the critical stressor. For large deep systems, inherent morphometric features such as large relative depth combine with external stressors to drive regime shifts. Light winds, morphometric conditions impeding deep mixing, and a stable stratification that lasts up to 9 months makes DVL more susceptible to hypolimnetic hypoxia, an intrinsic factor accelerating regime shift. Results also suggest regime shift occurred in 2013, when new limnological processes were established to reinforce the new alternative stable state and existing ecosystem services were impaired. Interactions between hypoxia, internal P loading (~2.1 mg m-2 d-1), and seasonal cyanobacterial blooms were identified as mechanisms perpetuating the new alternative state.

Keywords: CE-QUAL-W2; Critical external phosphorus loading threshold; Cyanobacteria; Geosmin; Hypoxia; Internal phosphorus recycling.