Effect of crown height on the screw joint stability of zirconia screw-retained crowns

J Prosthet Dent. 2022 Dec;128(6):1328-1334. doi: 10.1016/j.prosdent.2021.02.027. Epub 2021 Apr 8.

Abstract

Statement of problem: Medium- to long-term data for the performance of zirconia crowns with titanium (Ti) bases are sparse, particularly when the crown height space and occlusal loads are high.

Purpose: The purpose of this in vitro study was to assess the effect of the height of zirconia screw-retained implant crowns with a Ti base on the screw joint stability after cyclic loading. A secondary aim was to investigate the survival of zirconia crowns of different heights after cyclic loading.

Material and methods: Twenty-one internal connection implants were secured between fiberglass-reinforced epoxy resin sleeves. Mandibular first molar monolithic zirconia crowns with 3 different heights (6 mm, 10 mm, and 14 mm) were milled and bonded to the Ti bases (n=7). The screws were tightened to 30 Ncm, and a 30-degree 120-N cyclic load was applied to the crowns at 2 Hz for 5 million cycles. After 5 million cycles, the crowns were evaluated for stability, and the same protocol was repeated for 275-N and 435-N loads for 5 million cycles each. After loading, the detorque values were recorded. Failure was characterized based on whether the crown, screw, and/or implant fracture was observed. The detorque values were analyzed by using a 1-way-ANOVA with the restricted maximum likelihood estimation. The percentage of torque loss was calculated. The LIFETEST procedure was used to analyze the survival probability of the groups (α=.05).

Results: The effect of crown height on the detorque values of screws was not found to be statistically significant (P>.05). The mean detorque value for 6-mm crowns was 23.5 Ncm, 24.4 Ncm for 10-mm crowns, and 22.1 Ncm for 14-mm crowns. A significant effect of crown height was found on the survival (P=.006), and the time-to-failure survival of 14-mm crowns was significantly lower than the survival of 6 mm and 10 mm crowns (P=.020), where no failures were observed. Four 14-mm crowns failed between the 1 and 2 million cycles after the loads were increased to 435 N. The failure modes were the same for all the crowns, implants, and screws fractured.

Conclusions: When the tested internal connection implant was used, the crown height did not affect the detorque values, and 14-mm crowns performed similarly to the shorter crowns in terms of torque loss after cyclic loading. However, survival of the 14-mm crown-implant complex was lower, resulting in screw and implant fractures.

MeSH terms

  • Bone Screws
  • Crowns*
  • Dental Abutments*
  • Dental Implant-Abutment Design
  • Dental Restoration Failure
  • Dental Stress Analysis
  • Materials Testing
  • Titanium
  • Zirconium

Substances

  • zirconium oxide
  • Zirconium
  • Titanium