Home sleep apnea testing: an accuracy study

Sleep Breath. 2022 Mar;26(1):117-123. doi: 10.1007/s11325-021-02372-6. Epub 2021 Apr 10.

Abstract

Aim: There are no studies comparing tests performed at home with those carried out in the laboratory, using the same device. The only studies that have been performed have compared the device used at home with the standard polygraph used in the laboratory. The purpose of this study was therefore to verify the accuracy of the home diagnosis of obstructive sleep apnea syndrome (OSAS) via unassisted type 2 portable polysomnography, compared with polysomnography using the same equipment in a sleep laboratory.

Methods: To avoid any possible order effect on the apnea-hypopnea index (AHI), we randomly created two groups of 20-total 40 patients, according to the test sequence. One of the groups had the first test at home and the second test in the laboratory (H-L); the other group had the first test in the laboratory and the second at home (L-H). The second test always took place on the night immediately following the first test. All polysomnographic monitoring was undertaken with the same equipment, an Embletta X100 system (Embla, Natus Inc., Middleton, USA). The Embletta X100 is a portable polygraph that records eleven polygraph signs: (1) electroencephalogram C4/A; (2) electroencephalogram O2/M1; (3) submental EMG; (4) electrooculogram of the right side; (5) nasal cannula (air flow); (6) respiratory effort against a plethysmographic chest strap; (7) respiratory effort against an abdominal plethysmographic belt; (8) heart rate; (9) saturation of oxyhemoglobin; (10) snoring; and (11) body position.

Results: There was no difference in sleep efficiency between the group monitored in the laboratory and the group tested at home (p = 0.30). There was no difference in total sleep time (p = 0.11) or sleep latency (p = 0.52), or in the latency in phases N2 and N3 between the monitoring in the laboratory and at home (N2 p = 0.24; N3 p = 0.09). Some differences occurred regarding the PSG that took place at home, with longer duration of wake after sleep onset (WASO) and longer latency for REM sleep, due to failure of the patient to start the monitoring by pressing the "events" button on the device. In the distribution of sleep phases, there was no difference between the group monitored in the laboratory and the group tested at home.

Conclusion: Results from home sleep monitoring correlate well with the laboratory "gold standard" and may be an option for diagnosing OSAS in selected patients.

Keywords: Home sleep monitoring; Polysomnography; Sleep apnea; Type 2 portable polysomnography.

MeSH terms

  • Adult
  • Diagnostic Equipment / standards*
  • Equipment Design
  • Female
  • Humans
  • Male
  • Middle Aged
  • Monitoring, Ambulatory / instrumentation*
  • Polysomnography / instrumentation*
  • Sleep Apnea, Obstructive / diagnosis*