RNA:DNA triple helices: from peculiar structures to pervasive chromatin regulators

Essays Biochem. 2021 Oct 27;65(4):731-740. doi: 10.1042/EBC20200089.

Abstract

The genomes of complex eukaryotes largely contain non-protein-coding DNA, which is pervasively transcribed into a plethora of non-coding RNAs (ncRNAs). The functional importance of many of these ncRNAs has been investigated in the last two decades, revealing their crucial and multifaceted roles in chromatin regulation. A common mode of action of ncRNAs is the recruitment of chromatin modifiers to specific regions in the genome. Whereas many ncRNA-protein interactions have been characterised in detail, binding of ncRNAs to their DNA target sites is much less understood. Recently developed RNA-centric methods have mapped the genome-wide distribution of ncRNAs, however, how ncRNAs achieve locus-specificity remains mainly unresolved. In terms of direct RNA-DNA interactions, two kinds of triple-stranded structures can be formed: R-loops consisting of an RNA:DNA hybrid and a looped out DNA strand, and RNA:DNA triple helices (triplexes), in which the RNA binds to the major groove of the DNA double helix by sequence-specific Hoogsteen base pairing. In this essay, we will review the current knowledge about RNA:DNA triplexes, summarising triplex formation rules, detection methods, and ncRNAs reported to engage in triplexes. While the functional characterisation of RNA:DNA triplexes is still anecdotal, recent advances in high-throughput and computational analyses indicate their widespread distribution in the genome. Thus, we are witnessing a paradigm shift in the appreciation of RNA:DNA triplexes, away from exotic structures towards a prominent mode of ncRNA-chromatin interactions.

Keywords: RNA:DNA triplexes; epigenetics; non-coding RNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatin*
  • DNA / metabolism
  • RNA* / genetics

Substances

  • Chromatin
  • RNA
  • DNA