Improving scalability in systems neuroscience

Neuron. 2021 Jun 2;109(11):1776-1790. doi: 10.1016/j.neuron.2021.03.025. Epub 2021 Apr 7.

Abstract

Emerging technologies to acquire data at increasingly greater scales promise to transform discovery in systems neuroscience. However, current exponential growth in the scale of data acquisition is a double-edged sword. Scaling up data acquisition can speed up the cycle of discovery but can also misinterpret the results or possibly slow down the cycle because of challenges presented by the curse of high-dimensional data. Active, adaptive, closed-loop experimental paradigms use hardware and algorithms optimized to enable time-critical computation to provide feedback that interprets the observations and tests hypotheses to actively update the stimulus or stimulation parameters. In this perspective, we review important concepts of active and adaptive experiments and discuss how selectively constraining the dimensionality and optimizing strategies at different stages of discovery loop can help mitigate the curse of high-dimensional data. Active and adaptive closed-loop experimental paradigms can speed up discovery despite an exponentially increasing data scale, offering a road map to timely and iterative hypothesis revision and discovery in an era of exponential growth in neuroscience.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Brain / physiology
  • Feedback
  • Humans
  • Neurosciences / methods*
  • Research Design / standards
  • Systems Biology / methods*