Natural variation in rice ascorbate peroxidase gene APX9 is associated with a yield-enhancing QTL cluster

J Exp Bot. 2021 May 28;72(12):4254-4268. doi: 10.1093/jxb/erab155.

Abstract

We previously identified a cluster of yield-related quantitative trait loci (QTLs) including plant height in CR4379, a near-isogenic line from a cross between Oryza sativa spp. japonica cultivar 'Hwaseong' and the wild relative Oryza rufipogon. Map-based cloning and transgenic approaches revealed that APX9, which encodes an l-ascorbate peroxidase 4, is associated with this cluster. A 3 bp InDel was observed leading to the addition of a valine in Hwaseong compared with O. rufipogon. APX9-overexpressing transgenic plants in the Hwaseong background were taller than Hwaseong. Consistent with these results, APX9 T-DNA insertion mutants in the japonica cultivar Dongjin were shorter. These results confirm that APX9 is the causal gene for the QTL cluster. Sequence analysis of APX9 from 303 rice accessions revealed that the 3 bp InDel clearly differentiates japonica (APX9HS) and O. rufipogon (APX9OR) alleles. indica accessions shared both alleles, suggesting that APX9HS was introgressed into indica followed by crossing. The finding that O. rufipogon accessions with different origins carry APX9OR suggests that the 3 bp insertion was specifically selected in japonica during its domestication. Our findings demonstrate that APX9 acts as a major regulator of plant development by controlling a valuable suite of agronomically important traits in rice.

Keywords: Ascorbate peroxidase 9; domestication; near-isogenic line; pleiotropy; rice; yield-enhancing QTL cluster.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ascorbate Peroxidases
  • Crosses, Genetic
  • Oryza* / genetics
  • Phenotype
  • Quantitative Trait Loci* / genetics

Substances

  • Ascorbate Peroxidases