Effect of digestate loading rates on microalgae-based treatment under low LED light intensity

Environ Technol. 2022 Aug;43(20):3023-3036. doi: 10.1080/09593330.2021.1914178. Epub 2021 Jun 15.

Abstract

Low red-LED irradiances are an attractive alternative for enhancing microalgae photobioreactors treating digestate due to their potential contribution in decreasing area footprints with low energy consumptions. However, more information is required regarding the influence of digestate load on treatment performance and biomass valorisation when low-intensity red-LEDs are applied. Thus, this study assessed microalgae-based photobioreactors treating food waste digestate under different concentrations (5%, 25%, 50%, and 75%, v/v) at low red-LED irradiance (15 µmol·m-2·s-1). The removal efficiencies of soluble chemical oxygen demand (sCOD) at the end of the experiment ranged from 45% to 75% when treating influent loads between 5.3 and 79.1 g sCOD·m-3·d-1 (5% and 75%-digestate), respectively. Total ammonia nitrogen (TAN) was applied in loading rates between 3.2 and 48.5 g TAN·m-3·d-1 (5% and 75%, respectively) and removed with maximum efficiencies of 90%-100% in all trials. Nitrification-denitrification was proportionally more relevant when treating 5%-digestate, whereas volatilisation was the primary process in 25%, 50% and 75% concentrations. Microalgae presented adequate yields in all treatments, except in 75%-digestate, likely due to the blocking of light by the high solids concentrations. The assessment of the microalgae community and chlorophyll-a and carotenoids suggested that chlorophytes, mainly Dictyosphaerium pulchellum and Scenedesmus sp. grew autotrophically, whereas cyanobacteria Pseudanabaena sp. grew mixotrophically. Moreover, the sustainability of red LED lighting applications can be increased by anaerobic digestion or agricultural valorisation of the biomass, enabled by its high N and P contents. Low-intensity red-LEDs may have promissory applications in the treatment of high-strength wastewaters.

Keywords: Microalgal biomass; biomass valorisation; food waste digestate; high rate algal ponds; light-emitting diodes.

MeSH terms

  • Biomass
  • Food
  • Microalgae* / chemistry
  • Nitrogen
  • Photobioreactors
  • Refuse Disposal*
  • Wastewater / chemistry

Substances

  • Nitrogen
  • Wastewater