Exciton Diffusion in Highly-Ordered One Dimensional Conjugated Polymers: Effects of Back-Bone Torsion, Electronic Symmetry, Phonons and Annihilation

J Phys Chem Lett. 2021 Apr 15;12(14):3669-3678. doi: 10.1021/acs.jpclett.1c00193. Epub 2021 Apr 8.

Abstract

Many optoelectronic devices based on organic materials require rapid and long-range singlet exciton transport. Key factors controlling exciton transport include material structure, exciton-phonon coupling and electronic state symmetry. Here, we employ femtosecond transient absorption microscopy to study the influence of these parameters on exciton transport in one-dimensional conjugated polymers. We find that excitons with 21Ag- symmetry and a planar backbone exhibit a significantly higher diffusion coefficient (34 ± 10 cm2 s-1) compared to excitons with 11Bu+ symmetry (7 ± 6 cm2 s-1) with a twisted backbone. We also find that exciton transport in the 21Ag- state occurs without exciton-exciton annihilation. Both 21Ag- and 11Bu+ states are found to exhibit subdiffusive behavior. Ab initio GW-BSE calculations reveal that this is due to the comparable strengths of the exciton-phonon interaction and exciton coupling. Our results demonstrate the link between electronic state symmetry, backbone torsion and phonons in exciton transport in π-conjugated polymers.