Sustainable Liquid-Phase Exfoliation of Layered Materials with Nontoxic Polarclean Solvent

ACS Sustain Chem Eng. 2020 Dec 28;8(51):18830-18840. doi: 10.1021/acssuschemeng.0c04191. Epub 2020 Dec 14.

Abstract

Liquid-phase exfoliation is the most suitable platform for large-scale production of two-dimensional materials. One of the main open challenges is related to the quest of green and bioderived solvents to replace state-of-the-art dispersion media, which suffer several toxicity issues. Here, we demonstrate the suitability of methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv Polarclean) for sonication-assisted liquid-phase exfoliation of layered materials for the case-study examples of WS2, MoS2, and graphene. We performed a direct comparison, in the same processing conditions, with liquid-phase exfoliation using N-methyl-2-pyrrolidone (NMP) solvent. The amount of few-layer flakes (with thickness <5 nm) obtained with Polarclean is increased by ∼350% with respect to the case of liquid-phase exfoliation using NMP, maintaining comparable values of the average lateral size, which even reaches ∼10 μm for the case of graphene produced by exfoliation in Polarclean, and of the yield (∼40%). Correspondingly, the density of defects is reduced by 1 order of magnitude by Polarclean-assisted exfoliation, as evidenced by the I(D)/I(G) ratio in Raman spectra of graphene as low as 0.07 ± 0.01. Considering the various advantages of Polarclean over state-of-the-art solvents, including the absence of toxicity and its biodegradability, the validation of superior performances of Polarclean in liquid-phase exfoliation paves the way for sustainable large-scale production of nanosheets of layered materials and for extending their use in application fields to date inhibited by toxicity of solvents (e.g., agri-food industry and desalination), with a subsequent superb impact on the commercial potential of their technological applications.