Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance

J Environ Manage. 2021 Jun 15:288:112478. doi: 10.1016/j.jenvman.2021.112478. Epub 2021 Apr 7.

Abstract

The spatiotemporal dislocation of urbanization and ecological construction may lead to differences in the spatiotemporal pattern and matching of the ecosystem service supply and demand, which are significantly important in altering the ecosystem service supply and demand equilibrium. This study quantified and mapped the supply and demand of carbon sequestration services in the Xiangjiang River Basin (XRB) from 1990 to 2015 using the InVEST and population distribution models and identified the spatial distribution characteristics and changes in the supply and demand relationship on the sub-basin scale using the spatial autocorrelation method and Z-scores. The results show that the expansion of land urbanization greater than 50% was concentrated in the midstream and downstream, while the ecological construction was mainly distributed in the upstream. On the whole-basin scale, the supply of carbon sequestration services slightly decreased by 21.62%, while the demand sharply increased by 376.86%. The carbon sequestration services supply-demand ratio (CSDR) reduced from 0.16 (1990) to -0.03 (2015). This meant that the status of the supply and demand in the XRB had changed from oversupply to overdemand, and this tide turned in 2005 (-0.01). Furthermore, the spatial distribution pattern of the sub-basins' CSDR in the upstream was the High-High cluster, while it was the Low-Low cluster in the downstream. These results revealed the high spatial distribution consistency between the CSDR and urbanization and ecological construction. The slight increase in the carbon sinks caused by the ecological construction in the upstream could not offset the rapidly increased carbon emissions from the downstream for urbanization. Meanwhile, the lack of ecological concern during the urbanization process had led to a persistent reduction in the carbon sinks in the downstream, which also exacerbated the disequilibrium of the ecosystem service supply and demand in the XRB. Consequently, this study suggests that the scale and speed of the urbanization of land should be reasonably controlled and that the ecological construction in rapid urbanization regions should be strengthened to meet the demand for ecosystem services.

Keywords: Ecological construction; Ecosystem service; Spatiotemporal dislocation; Supply and demand; Urbanization.

MeSH terms

  • Carbon
  • Carbon Sequestration
  • China
  • Conservation of Natural Resources
  • Ecosystem*
  • Rivers
  • Urbanization*

Substances

  • Carbon