Weak Anion Binding to Poly(N-isopropylacrylamide) Detected by Electrophoretic NMR

J Phys Chem B. 2021 Apr 15;125(14):3710-3716. doi: 10.1021/acs.jpcb.1c00642. Epub 2021 Apr 6.

Abstract

Ion specific effects are ubiquitous in solutions and govern a large number of colloidal phenomena. To date, a substantial and sustained effort has been directed at understanding the underlying molecular interactions. As a new approach, we address this issue by sensitive 1H NMR methods that measure the electrophoretic mobility and the self-diffusion coefficient of poly(N-isopropylacrylamide) (PNIPAM) chains in bulk aqueous solution in the presence of salts with the anion component varied from kosmotropes to chaotropes along the Hofmeister series. The accuracy of the applied electrophoretic NMR experiments is exceptionally high, on the order of 10-10 m2/(V s), corresponding to roughly 10-4 elementary charges per monomer effectively associated with the neutral polymer. We find that chaotropic anions associate to PNIPAM with an apparent Langmuir-type saturation behavior. The polymer chains remain extended upon ion association, and momentum transfer from anion to polymer is only partial which indicates weak attractive short-range forces between anion and polymer and, thereby and in contrast to some other ion-polymer systems, the lack of well-defined binding sites.

Publication types

  • Research Support, Non-U.S. Gov't