High-efficiency coupling of single quantum emitters into hole-tailored nanofibers

Opt Express. 2021 Mar 29;29(7):11158-11168. doi: 10.1364/OE.420243.

Abstract

We propose a scheme to enhance the coupling efficiency of photons from a single quantum emitter into a hole-tailored nanofiber. The single quantum emitter is positioned inside a circular hole etched along the radial axis of the nanofiber. The coupling efficiency can be effectively enhanced and is twice as high as the case in which only an intact nanofiber without the hole is used. The effective enhancement independent of a cavity can avoid the selection of a single emitter for the specific wavelength, which means a broad operating wavelength range. Numerical simulations are performed to optimize the coupling efficiency by setting appropriate diameters of the nanofiber and the hole. The simulation results show that the coupling efficiency can reach 62.8% when the single quantum emitter with azimuthal polarization (x direction) is at a position 200 nm from the middle of the hole along the hole-axial direction. The diameters of the nanofiber and the hole are 800 nm and 400 nm, respectively, while the wavelength of the single quantum emitter is 852 nm. Hole-tailored nanofibers have a simple configuration and are easy to fabricate and integrate with other micro/nanophotonic structures; this fiber structure has wide application prospects in quantum information processing and quantum precision measurement.