Temperature-dependent radiative lifetime of Yb:YLF: refined cross sections and potential for laser cooling

Opt Express. 2021 Mar 29;29(7):11106-11120. doi: 10.1364/OE.422535.

Abstract

We revisit the spectroscopic characterization of ytterbium-doped LiYF4 (Yb:YLF) for the application of laser cooling. Time-dependent fluorescence spectroscopy reveals a temperature dependence of the radiative lifetime which we explain by the Boltzmann distribution of excited ions in the upper Stark levels. The emission cross sections of Yb:YLF from 17 K to 440 K are revised using the temperature-dependent radiative lifetimes from fluorescence spectra. We provide fit equations for the peak values of important transitions as a function of temperature, which is also useful for the design of Yb:YLF laser oscillators and amplifiers operated at cryogenic temperatures. Based on our spectroscopic data, we show the prerequisite crystal purity to achieve laser cooling below liquid nitrogen temperatures.