Reaction-Diffusion Model for Gasification of a Shrinking Single Carbon-Anode Particle

ACS Omega. 2021 Mar 22;6(12):8002-8015. doi: 10.1021/acsomega.0c05297. eCollection 2021 Mar 30.

Abstract

The present work focuses on the gasification of a single carbon-anode particle with CO2, using a detailed reaction-transport model based on the reaction intrinsic kinetics and transport of gaseous species. The model includes the mass conservation equations for the gas components and solid carbon particles, resulting in a set of nonlinear partial differential equations, being solved using numerical techniques. The model may predict the gas generation rate, the gas compositions, and the carbon consumption rate during the gasification of a carbon particle. Five kinetic models were compared to describe the gasification behavior of carbon particles. It was found that the random pore model (RPM) provided the best description of the reactivity of anode particles. The model also predicted the particle shrinkage during the gasification process. The model was validated using experimental results obtained with different particle size ranges, being gasified with CO2 at 1233 K. The experiments were performed in a thermogravimetric analyzer (TGA). Good agreement between the model results and the experimental data showed that this approach could quantify with success the gasification kinetics and the gas distribution within the anode particle. In addition, the Langmuir-Hinshelwood (L-H) model is used in order to capture the inhibition effect of carbon monoxide on the gasification reaction. The effectiveness factor and Thiele modulus simulated for various particle sizes helped assess the evolution of the relative dominance of diffusion and chemical reactions during the gasification process.