Promotive action of 2-acetylaminofluorene on hepatic precancerous lesions initiated by diethylnitrosamine in rats: Molecular study

World J Hepatol. 2021 Mar 27;13(3):328-342. doi: 10.4254/wjh.v13.i3.328.

Abstract

Background: Diethylnitrosamine (DEN) induces hepatic neoplastic lesions over a prolonged period.

Aim: To investigate the promotive action of 2-acetylaminofluorene (2-AAF) when combined with DEN in order to develop a rat model for induction of precancerous lesion and investigate the molecular mechanism underlying the activity of 2-AAF.

Methods: The pre-precancerous lesions were initiated by intraperitoneal injection of DEN for three weeks consecutively, followed by one intraperitoneal injection of 2-AAF at three different doses (100, 200 and 300 mg/kg). Rats were separated into naïve, DEN, DEN + 100 mg 2-AAF, DEN + 200 mg 2-AAF, and DEN + 300 mg 2-AAF groups. Rats were sacrificed after 10 wk and 16 wk. Liver functions, level of alpha-fetoprotein, glutathione S-transferase-P and proliferating cell nuclear antigen staining of liver tissues were performed. The mRNA level of RAB11A, BAX, p53, and Cyclin E and epigenetic regulation by long-noncoding RNA (lncRNA) RP11-513I15.6, miR-1262 (microRNA), and miR-1298 were assessed in the sera and liver tissues of the rats.

Results: 2-AAF administration significantly increased the percent area of the precancerous foci and cell proliferation along with a significant decrease in RAB11A, BAX, and p53 mRNA, and the increase in Cyclin E mRNA was associated with a marked decrease in lncRNA RP11-513I15.6 expression with a significant increase in both miR-1262 and miR-1298.

Conclusion: 2-AFF promoted hepatic precancerous lesions initiated through DEN by decreasing autophagy, apoptosis, and tumor suppression genes, along with increased cell proliferation, in a time- and dose-dependent manner. These actions were mediated under the epigenetic regulation of lncRNA RP11-513I15.6/miR-1262/miR-1298.

Keywords: Acetylaminofluorene; Apoptosis; Autophagy; Diethylnitrosamine; Hepatic precancerous lesion; MicroRNA.