Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes

Molecules. 2021 Mar 26;26(7):1868. doi: 10.3390/molecules26071868.

Abstract

Various bioorthogonal chemistries have been used for fluorescent imaging owing to the advantageous reactions they employ. Recent advances in bioorthogonal chemistry have revolutionized labeling strategies for fluorescence imaging, with inverse electron demand Diels-Alder (iEDDA) reactions in particular attracting recent attention owing to their fast kinetics and excellent specificity. One of the most interesting features of the iEDDA labeling strategy is that tetrazine-functionalized dyes are known to act as fluorogenic probes. In this review, we will focus on the synthesis, molecular-design strategies, and bioimaging applications of tetrazine-functionalized fluorogenic probes. Traditional Pinner reaction and "Pinner-like" reactions for tetrazine synthesis are discussed here, as well as metal-catalyzed C-C bond formations with convenient tetrazine intermediates and the fabrication of tetrazine-conjugated fluorophores. In addition, four different quenching mechanisms for tetrazine-modified fluorophores are presented.

Keywords: bioimaging; click chemistry; fluorogenic; tetrazine.

Publication types

  • Review

MeSH terms

  • Fluorescence*
  • Fluorescent Dyes* / chemical synthesis
  • Fluorescent Dyes* / chemistry
  • Heterocyclic Compounds, 1-Ring* / chemical synthesis
  • Heterocyclic Compounds, 1-Ring* / chemistry
  • Kinetics
  • Optical Imaging*

Substances

  • Fluorescent Dyes
  • Heterocyclic Compounds, 1-Ring