In Silico Analysis of Huntingtin Homologs in Lower Eukaryotes

Int J Mol Sci. 2021 Mar 22;22(6):3214. doi: 10.3390/ijms22063214.

Abstract

Huntington's disease is a rare neurodegenerative and autosomal dominant disorder. HD is caused by a mutation in the gene coding for huntingtin (Htt). The result is the production of a mutant Htt with an abnormally long polyglutamine repeat that leads to pathological Htt aggregates. Although the structure of human Htt has been determined, albeit at low resolution, its functions and how they are performed are largely unknown. Moreover, there is little information on the structure and function of Htt in other organisms. The comparison of Htt homologs can help to understand if there is a functional conservation of domains in the evolution of Htt in eukaryotes. In this work, through a computational approach, Htt homologs from lower eukaryotes have been analysed, identifying ordered domains and modelling their structure. Based on the structural models, a putative function for most of the domains has been predicted. A putative C. elegans Htt-like protein has also been analysed following the same approach. The results obtained support the notion that this protein is a orthologue of human Htt.

Keywords: Caenorhabditis elegans; function prediction; huntingtin; molecular modelling.

MeSH terms

  • Animals
  • Eukaryota*
  • Humans
  • Huntingtin Protein / chemistry*
  • Models, Molecular*
  • Protein Conformation*
  • Protein Interaction Domains and Motifs
  • Sequence Homology, Amino Acid
  • Species Specificity
  • Structure-Activity Relationship

Substances

  • Huntingtin Protein