Simple Synthesis of Molybdenum Carbides from Molybdenum Blue Nanoparticles

Nanomaterials (Basel). 2021 Mar 30;11(4):873. doi: 10.3390/nano11040873.

Abstract

In recent years, much attention has been paid to the development of a new flexible and variable method for molybdenum carbide (Mo2C) synthesis. This work reports the applicability of nano-size clusters of molybdenum blue to molybdenum carbide production by thermal treatment of molybdenum blue xerogels in an inert atmosphere. The method developed made it possible to vary the type (glucose, hydroquinone) and content of the organic reducing agent (molar ratio R/Mo). The effect of these parameters on the phase composition and specific surface area of molybdenum carbides and their catalytic activity was investigated. TEM, UV-VIS spectroscopy, DTA, SEM, XRD, and nitrogen adsorption were performed to characterize nanoparticles and molybdenum carbide. The results showed that, depending on the synthesis conditions, variants of molybdenum carbide can be formed: α-Mo2C, η-MoC, or γ-MoC. The synthesized samples had a high specific surface area (7.1-203.0 m2/g) and meso- and microporosity. The samples also showed high catalytic activity during the dry reforming of methane. The proposed synthesis method is simple and variable and can be successfully used to obtain both Mo2C-based powder and supports catalysts.

Keywords: dispersion; molybdenum blue; molybdenum carbide; nanoclusters; sol-gel method.