Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis

J Clin Med. 2021 Mar 4;10(5):1070. doi: 10.3390/jcm10051070.

Abstract

The topical literature lacks any comparison between stereolithography (SLA) and direct light processing (DLP) printing methods with regard to the accuracy of complete denture base fabrication, thereby utilizing materials certified for this purpose. In order to investigate this aspect, 15 denture bases were printed with SLA and DLP methods using three build angles: 0°, 45° and 90°. The dentures were digitalized using a laboratory scanner (D2000, 3Shape) and analyzed in analyzing software (Geomagic Control X, 3D systems). Differences between 3D datasets were measured using the root mean square (RMS) value for trueness and precision and mean and maximum deviations were obtained for each denture base. The data were statistically analyzed using two-way ANOVA and Tukey's multiple comparison test. A heat map was generated to display the locations of the deviations within the intaglio surface. The overall tendency indicated that SLA denture bases had significantly higher trueness for most build angles compared to DLP (p < 0.001). The 90° build angle may provide the best trueness for both SLA and DLP. With regard to precision, statistically significant differences were found in the build angles only. Higher precision was revealed in the DLP angle of 0° in comparison to the 45° and 90° angles.

Keywords: 3D printing; additive manufacturing; complete denture; direct light processing; edentulism; rapid manufacturing; rapid prototyping; stereolithography.