Treatment with Cyclic AMP Activators Reduces Glioblastoma Growth and Invasion as Assessed by Two-Photon Microscopy

Cells. 2021 Mar 4;10(3):556. doi: 10.3390/cells10030556.

Abstract

(1) Background: Despite progress in surgery and radio-chemotherapy of glioblastoma (GB), the prognosis remains very poor. GB cells exhibit a preference for hypoxia to maintain their tumor-forming capacity. Enhancing oxidative phosphorylation-known as the anti-Warburg effect-with cyclic AMP activators has been demonstrated to drive GB cells from proliferation to differentiation thereby reducing tumor growth in a cell culture approach. Here we re-evaluate this treatment in a more clinically relevant model. (2) Methods: The effect of treatment with dibutyryl cyclic AMP (dbcAMP, 1 mM) and the cAMP activator forskolin (50µM) was assessed in a GB cell line (U87GFP+, 104 cells) co-cultured with mouse organotypic brain slices providing architecture and biochemical properties of normal brain tissue. Cell viability was determined by propidium-iodide, and gross metabolic effects were excluded in the extracellular medium. Tumor growth was quantified in terms of area, volume, and invasion at the start of culture, 48 h, 7 days, and 14 days after treatment. (3) Results: The tumor area was significantly reduced following dbcAMP or forskolin treatment (F2,249 = 5.968, p = 0.0029). 3D volumetric quantification utilizing two-photon fluorescence microscopy revealed that the treated tumors maintained a spheric shape while the untreated controls exhibited the GB typical invasive growth pattern. (4) Conclusions: Our data demonstrate that treatment with a cAMP analog/activator reduces GB growth and invasion.

Keywords: 2-photon-microscopy; Warburg effect; glioblastoma; oxidative phosphorylation; treatment.

MeSH terms

  • Animals
  • Cell Differentiation
  • Cyclic AMP / metabolism*
  • Glioblastoma / genetics*
  • Glioblastoma / pathology
  • Humans
  • Mice
  • Microscopy / methods*
  • Neoplasm Invasiveness
  • Oxidative Phosphorylation

Substances

  • Cyclic AMP