Photocatalytic Activities of FeNbO4/NH2-MIL-125(Ti) Composites toward the Cycloaddition of CO2 to Propylene Oxide

Molecules. 2021 Mar 17;26(6):1693. doi: 10.3390/molecules26061693.

Abstract

Photocatalytic utilization of CO2 in the production of value-added chemicals has presented a recent green alternative for CO2 fixation. In this regard, three FeNbO4/NH2-MIL-125(Ti) composites of different mole ratios were synthesized, characterized using Powder X-ray diffraction (PXRD), UV-vis diffuse reflectance spectroscopy (UV-Vis DRS), Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX). PXRD patterns confirm the co-existence of the parent components in the prepared composites. Moreover, the surface area increased as the mole percent of NH2-MIL-125(Ti) in the composites increased due to the large surface area of NH2-MIL-125(Ti). Prepared composites were investigated for the photocatalytic insertion of CO2 into propylene oxide. FeNbO4(75%)/NH2-MIL-125(Ti)(25%) showed the highest percent yield of 52% compared to the other two composites. Results demonstrate the cooperative mechanism between FeNbO4 and NH2-MIL-125(Ti) and that the reaction proceeded photocatalytically.

Keywords: FeNbO4/NH2-MIL-125(Ti); band gap; composite; cyclic carbonate; photocatalyst.