Evaluating Martial Arts Punching Kinematics Using a Vision and Inertial Sensing System

Sensors (Basel). 2021 Mar 10;21(6):1948. doi: 10.3390/s21061948.

Abstract

Martial arts has many benefits not only in self-defence, but also in improving physical fitness and mental well-being. In our research we focused on analyzing the velocity, impulse, momentum and impact force of the Taekwondo sine-wave punch and reverse-step punch. We evaluated these techniques in comparison with the martial arts styles of Hapkido and Shaolin Wushu and investigated the kinematic properties. We developed a sensing system which is composed of an ICSensor Model 3140 accelerometer attached to a punching bag for measuring dynamic acceleration, Kinovea motion analysis software and 2 GoPro Hero 3 cameras, one focused on the practitioner's motion and the other focused on the punching bag's motion. Our results verified that the motion vectors associated with a Taekwondo practitioner performing a sine-wave punch, uses a unique gravitational potential energy to optimise the impact force of the punch. We demonstrated that the sine-wave punch on average produced an impact force of 6884 N which was higher than the reverse-step punch that produced an average impact force of 5055 N. Our comparison experiment showed that the Taekwondo sine-wave punch produced the highest impact force compared to a Hapkido right cross punch and a Shaolin Wushu right cross, however the Wushu right cross had the highest force to weight ratio at 82:1. The experiments were conducted with high ranking black belt practitioners in Taekwondo, Hapkido and Shaolin Wushu.

Keywords: Taekwondo; biomechanics; dynamic measurement; human kinematics; martial arts; motion tracking; sensors; sports science.