pH-Responsive Self-Assembly of Designer Aromatic Peptide Amphiphiles and Enzymatic Post-Modification of Assembled Structures

Int J Mol Sci. 2021 Mar 27;22(7):3459. doi: 10.3390/ijms22073459.

Abstract

Supramolecular fibrous materials in biological systems play important structural and functional roles, and therefore, there is a growing interest in synthetic materials that mimic such fibrils, especially those bearing enzymatic reactivity. In this study, we investigated the self-assembly and enzymatic post-modification of short aromatic peptide amphiphiles (PAs), Fmoc-LnQG (n = 2 or 3), which contain an LQG recognition unit for microbial transglutaminase (MTG). These aromatic PAs self-assemble into fibrous structures via π-π stacking interactions between the Fmoc groups and hydrogen bonds between the peptides. The intermolecular interactions and morphologies of the assemblies were influenced by the solution pH because of the change in the ionization states of the C-terminal carboxy group of the peptides. Moreover, MTG-catalyzed post-modification of a small fluorescent molecule bearing an amine group also showed pH dependency, where the enzymatic reaction rate was increased at higher pH, which may be because of the higher nucleophilicity of the amine group and the electrostatic interaction between MTG and the self-assembled Fmoc-LnQG. Finally, the accumulation of the fluorescent molecule on these assembled materials was directly observed by confocal fluorescence images. Our study provides a method to accumulate functional molecules on supramolecular structures enzymatically with the morphology control.

Keywords: enzymatic reaction; pH-responsiveness; peptide amphiphile; post-modification; self-assembly.

MeSH terms

  • Amines / chemistry
  • Binding Sites
  • Biomimetics / methods
  • Cadaverine / chemistry
  • Carboxylic Acids / chemistry
  • Enzymes
  • Escherichia coli / enzymology
  • Fluorescent Dyes / chemistry
  • Hydrogen Bonding
  • Hydrogen-Ion Concentration
  • Microscopy, Confocal
  • Nanostructures / chemistry
  • Peptides / chemistry*
  • Protein Binding
  • Protein Domains
  • Spectroscopy, Fourier Transform Infrared
  • Static Electricity
  • Transglutaminases / chemistry*

Substances

  • Amines
  • Carboxylic Acids
  • Enzymes
  • Fluorescent Dyes
  • Oregon Green 488 carboxylic acid
  • Peptides
  • Transglutaminases
  • Cadaverine