Effects of Water and Energy on Plant Diversity along the Aridity Gradient across Dryland in China

Plants (Basel). 2021 Mar 27;10(4):636. doi: 10.3390/plants10040636.

Abstract

Plants need water and energy for their growth and reproduction. However, how water and energy availability influence dryland plant diversity along the aridity gradient in water-limited regions is still lacking. Hence, quantitative analyses were conducted to evaluate the relative importance of water and energy to dryland plant diversity based on 1039 quadrats across 184 sites in China's dryland. The results indicated that water availability and the water-energy interaction were pivotal to plant diversity in the entire dryland and consistent with the predictions of the water-energy dynamic hypothesis. The predominance of water limitation on dryland plant diversity showed a weak trend with decreasing aridity, while the effects of energy on plants were found to be significant in mesic regions. Moreover, the responses of different plant lifeforms to water and energy were found to vary along the aridity gradient. In conclusion, the study will enrich the limited knowledge about the effects of water and energy on plant diversity (overall plants and different lifeforms) in the dryland of China along the aridity gradient.

Keywords: aridity gradient; dryland; plant diversity; plant lifeforms; water–energy dynamics.