Fermented Maillard Reaction Products by Lactobacillus gasseri 4M13 Alters the Intestinal Microbiota and Improves Dysfunction in Type 2 Diabetic Mice with Colitis

Pharmaceuticals (Basel). 2021 Mar 28;14(4):299. doi: 10.3390/ph14040299.

Abstract

Inflammatory bowel disease is a chronic relapsing disease. Multiple factors can cause inflammatory bowel disease (IBD), including diet, imbalance of the immune system, and impaired intestinal barrier function. Type 2 diabetes mellitus is a complex and chronic metabolic disease caused by a combination of insulin resistance and an ineffective insulin secretory response. The co-occurrence of these two diseases, demonstrating interrelated effects within the gut microbiota, has been frequently reported. This study evaluated the effects of a fermented glycated conjugate of whey protein and galactose with Lactobacillus gasseri 4M13 (FMRP) to prevent type 2 diabetes mellitus with inflammatory bowel disease. C57BLKS/J- db/db mice were orally administered FMRP for 14 consecutive days and 2% dextran sulfate sodium (DSS) in water ad libitum for 5 days to induce colitis. FMRP-fed mice showed improved insulin secretion and symptoms of colitis. Compared to the DSS group, the FMRP group showed a decreased abundance of six bacterial genera and increased abundance of Alistipes and Hungateiclostridium. In cecal contents, the levels of short-chain fatty acids increased in the FMRP group compared to those in the DSS group. Continuous administration of FMRP thus may improve the homeostasis of not only insulin secretion and inflammation, but also the intestinal environment in inflammatory bowel disease and type 2 diabetes mellitus.

Keywords: biological therapy; fermented Maillard reaction products; gut microbial composition; inflammatory bowel disease; type 2 diabetes mellitus.

Grants and funding